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LS-DYNA ALE has been widely used to simulating moving fluids interacting with structures.  Unlike 

CFD, the focus is rather on the structure response under dynamic loading from fluids, than the 

fluids’ motion.  Fluids are agitated by a high pressure gradient; and then hit the structure, carrying 

a large momentum.  The key in successfully capturing the physics lies in the fluid-structure 

interaction algorithm.  It needs to accurately predict the peak of pressure loading during the 

impact, which is characterized as a momentum transfer process.  This request could only be 

fulfilled by a transient analysis with a penalty-based coupling between fluids and structure. 

In 2015, LSTC introduced a new structured ALE (S-ALE) solver option dedicated to solve the subset 

of ALE problems where a structured mesh is appropriate. As expected, recognizing the logical 

regularity of the mesh brought a reduced simulation time for the case of identical structured and 

unstructured mesh definitions.  It also comes with a cleaner, conceptually simpler way of model 

setup.  This article gives a brief description on setting up the boundary and initial conditions in S-

ALE models. 

What is Boundary?  

In a Lagrangian model, mesh conforms to the material interface.  The boundary is a collection of 

surface segments and nodes enclosing the material (*PART).   And we could choose a set of 

segments or nodes to apply boundary conditions on them.  For example, one uses 

*LOAD_SEGMENT to apply pressure on a set of segments; *BOUNDARY_SPC to apply nodal 

constraints on a set of nodes, etc. 

However, in an ALE model, things are totally different.  Mesh is no longer the spatial 

representation of the material.  Rather, it is simply a domain in which we study the flow of that 

(and other) material.  In Lagrangian, what really happened was that we applied boundary 

conditions on the material surface.   The equivalent thing to do in an ALE model is to apply some 

force or constraints at the material interface, NOT at the mesh boundary.  As the mesh boundary 

is just the limit of our working field, nothing more. 

As the material interface is evolving in ALE models, plus it has no explicit description, generally it 

is not possible to apply “boundary conditions” directly at the material interface.  Most of times, 

boundary conditions are applied through fluid-structure interaction (FSI).  For example, we want 

to create a wave by pushing water sideways from left to right.  If modeled as Lagrangian water, 

all we need to do is to find its boundary nodes and apply a prescribed motion on them.  In ALE, 

it is not possible as these nodes do not move with water.  Remember? Mesh does not move; 

fluids flow inside it.  So what we do is to create a Lagrange plate and set up a FSI between water 

and the plate.  Then we apply this prescribed motion onto the plate.  Then FSI is going to enforce 

the water to move together with the plate. 



Boundary Conditions 

The above being said, on one condition we could still use boundary conditions in an ALE model.  

As you might have guessed,  that is when the mesh boundary conforms to the material interface.  

Say we have a half symmetry model and -x mesh face is the symmetry plane.  What we need to 

do is to apply nodal constraints along x direction on all nodes at that face.  Another example is a 

flat bottom container.  If we choose to align the bottom mesh face with that simple geometry 

container, we could apply a SPC along z direction at -z face nodes. 

Another exception is transmitting boundary condition, i.e. *BOUNDARY_NON_REFLECTING.  The 

transmitting boundary is to apply an impedance to minimize the pressure wave reflection at the 

mesh boundary when we use a finite mesh to model the infinite domain.  It is designed for 

Lagrangian but used often in ALE models to help reducing the model size. 

In both cases, we first define a set of nodes (SPC) or segments (NON_REFLECTING).  And then we 

setup the SPC cards or NON_REFECTING cards using those definitions.  Let us use a case of  

underwater explosion to show the process.  We have three multi-materials (fluids) in the model 

- a half sphere high explosive (HE), water above and around it, and then air on the top, as shown 

in the figure below.  We construct a half symmetry model with symmetric plane aligning with -y 

face.  

 

https://ftp.lstc.com/anonymous/outgoing/hao/sale/models_R121/underwater/ 

We follow the three-step setup.  First mesh. A 24x12x16 box spans from (-12,0,0) to (12,0,16). 

https://ftp.lstc.com/anonymous/outgoing/hao/sale/models_R121/underwater/


 
Next, multi-materials. Water, HE and Air.  Please note, air has a reference pressure of 1.0e-5; water and 

HE have their reference pressure set to 0. 

 

And then, volume filling. First, all elements filled with water. Next, inside a sphere to HE. Then 
above a plane to air. 
 



 

And let us be a Minimalist on *CONTROL_ALE. 
 

 
Now to apply boundary conditions on the six faces of the S-ALE mesh.  They could be categorized 

into three types: 

1. Symmetric plane: -y face.  This translates to a *BOUNDARY_SPC on all nodes at that face 

along the local y direction.   

2. No flow in and out: -z face.  This face aligns perfectly to the seabed. Water and HE could 

move freely inside the plane. But nothing could flow in/out of the plane.  This translates 

to a *BOUNDARY_SPC on all nodes at that face along the local z direction. 

3. Transmitting boundary: all other 4 faces.  At those four faces, we want to allow the 

pressure wave travel freely into the unmeshed infinite domain.  We do that by adding a 

*BOUNDARY_NON_REFLECTING on all segments on those faces. 

For a more user-friendly S-ALE setup, we added the following “macro-like” keyword to apply SPC 

constraints.  It will be available in the next release in R12 (R12.1). 

*BOUNDARY_SALE_MESH_FACE 

OPTION MSHID -X +X -Y +Y -Z +Z 

SYM 1   1    

NOFLOW 1     1  

NONREFL 1 1 1  1  1 

 

Internally it is translated into the following keywords: 



 

It is totally users’ choice to use *BOUNDARY_SALE_MESH_FACE or not.  Other than being concise, 

another advantage is that it is less error prone.  Especially when the mesh is tilted, i.e. there is a 

local coordinate system.  In this case, if we use *BOUNDARY_SPC, we need to remember to set 

up a local coordinate system, and make sure that we constraint the correct component.  

*BOUNNDARY_SALE_MESH_FACE, on the other hand, handles all those silently and 

automatically and takes off those unnecessary burdens from users. 

One thing to note is that the two options SYM and NOFLOW, are doing the same thing.  That is 

to constrain the flow perpendicular to the plane.  We have both options available, simply to 

provide a one-to-one match between the options and real physical scenarios. 

Another option, as you might have guessed, is FIXED.  It is to fix all nodal motions at that face. 

SALECPT and SALEFAC in *SET_?_GENERAL 

In the model  example above, when using the traditional *BOUDNARY_SPC and 

*BOUNDARY_NON_REFLECTING setup, one can notice that *SET_NODE_GENERAL and 

*SET_SEGMENT_GENERAL are used to generate node and segment sets, respectively.  Unlike 

traditional ALE, S-ALE relies solely on *SET_?_GENERAL to create node/segment/element sets.  

This is because S-ALE mesh is generated internally so it is difficult, if not possible, to explicitly list 

out IDs of nodes/segments/elements.  So what we do is to generate those sets by using SALECPT 

and SALEFAC options in *SET_?_GENERAL. 

SALEFAC will pick up all nodes/segments/solids at certain S-ALE mesh face(s).  The one below 

added all nodes at -y face of S-ALE mesh #1 into node set #1. 

SALECPT provides a more flexible way.  It picks up all nodes/segments/elements inside a box 

indexed by S-ALE control points.  For example, this one below added the bottom half of nodes in 

the S-ALE mesh #1 into node set #101.  (Remember our mesh is a box of 24x12x16 elements?) 



 

One thing we need to stress here.  No other options in *SET_?_GENERAL could be applied onto 

S-ALE mesh.  A common mistake is BOX option.  The reason we did not support it was to avoid 

user mistakes.  Most of the time Lagrange mesh and S-ALE mesh are on top of each other, i.e., 

overlaps in space.  And more likely users tend to pick nodes inside a box for the Lagrange mesh; 

or the S-ALE mesh.  Not both.   Supporting BOX option might accidentally include S-ALE nodes 

into an intended Lagrange node set, without users even realizing that. 

Initial Conditions 

Initial conditions are relatively simple.  Typically it is only to assign some initial velocity to some 

nodes.  But still, there is some fine difference between LAG and ALE models.  Again, we must 

emphasize that ALE material interface is not necessarily at the boundary.  And it makes sense to 

apply initial velocities on certain nodes only if those nodes are the real spatial representation of 

a material. 

Most commonly, initial velocities are applied simultaneously with volume filling process, through 

the *ALE_STRUCTURED_MESH_VOLUME_FILLING card.  Like the following: 

 

And the initial velocity (vx=-61.631,vy=208.06) is prescribed by using the *DEFINE_VECTOR card. 

The volume filling process will first fill the box with the multi-material named “plate” and then, 

find all nodes belongs to “plate” and assign an initial velocity to them. 

Ending Remarks 

LS-DYNA ALE module has been known for its steep learning curve.  Partially it was because setting 

up Eulerian models are intrinsically different from Lagrange models.  But the design of ALE 

keyword cards, for sure, has caused quite a lot of confusions among our users, new and 

experienced.   

To prompt LS-DYNA ALE usages, Structured ALE solver introduced a new, user-friendly, 

streamlined three-step setup.  We hope this effort could help users, new or old, to perform their 

work more efficiently and smoothly.     

 



 


